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Abstract
This work solves many performance problems in the packet processing speed of
SCION. For this purpose, we use XDP as a growing technology and evaluate
to what extend modern network technologies can accelerate the end-user
performance of SCION applications without changing existing APIs.
The current SCION reference implementation has two problems which we
cover in this work: The Dispatcher as a central element, that does not perform
well under high load, and the packet processing in the client library, which
leads to packet loss due to low processing throughput under high load.
We solve these problems with two optimizations: The Dispatcher Bypass
through the use of XDP and packet processing improvements to the client
libraries used by applications. To solve the first bottleneck, we optimized the
Dispatcher’s data path, in which we used XDP to take over the Dispatcher’s
main task of forwarding packets. For the second bottleneck, we wrote an
optimized version of the SCION connection with efficient packet processing
that applications use to access the SCION network. This provides further
performance benefit in combination with the previous optimization.
We evaluate our optimizations in a scientific scenario and a real-world scenario.
In the scientific scenario, the bandwidth approximately quadrupled with the
use of Dispatcher Bypass using XDP, while in the real-world scenario, the
throughput tripled. Additionally, in conjunction with the optimized SCION
connection, throughput could be increased sevenfold in the scientific approach,
while a threefold increase was observed in the real-world scenario.
Therefore, we show that XDP is a well suited technology to increase the
throughput of SCION applications without changing existing APIs. However,
the full potential of this optimization can only be achieved if the client libraries
allow efficient data processing.
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1. Introduction

1.1 Motivation

In today’s world, fast Internet speeds of more than 1 GBit/s are no longer
uncommon. While TCP and UDP use highly optimized network stacks to fully
utilize the available bandwidth, SCION lags behind in terms of performance.
Scalability, Control, and Isolation on Next-Generation Networks (SCION) is
a new generation network architecture to overcome the technical problems
of the Internet as we know it today. While it solves many known technical
issues, e.g. trust issues with BGP announcements and missing path control,
it creates other performance challenges due to its design decisions. Since
the implementation of TCP and UDP within the Linux kernel can transmit
many gigabits per second and network speeds will raise [3], SCIONs reference
implementation needs to overcome some performance bottlenecks limiting
packet processing power. The Dispatcher, a required part of any SCION
client installation, seems to be one of the biggest performance bottlenecks
since it needs to forward every incoming and outgoing packet [22].
eBPF and XDP have become more stable in recent years and have been
massively upgraded in recent versions of the Linux kernel. XDP provides
capabilities for direct inspection, modification or dropping of the package in
kernel space. This allows higher throughput rates and smaller latencies [23].
XDP can be used to take over the performance-critical part of the Dispatcher’s
data processing. There are also some other accessible performance optimiza-
tion possible in the client libraries, but these can only be evaluated after the
major performance botleneck has been eliminated.

1.2 Goal

This work covers the design, implementation and evaluation of an XDP-based
approach to remove bottlenecks from the performance-critical path of SCION
as well as some general performance optimizations for packet processing.
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CHAPTER 1 INTRODUCTION 1.3 Structure

The objective of this thesis is to answer the following research question: To
what extent can modern network-related technologies, especially XDP, accel-
erate the performance of end-user applications in SCION without changing
APIs?

1.3 Structure

After this short introduction and motivation of the thesis topic, we will
provide some background information to cover relevant knowledge for this
thesis in Chapter 2. Further, we present related work in Chapter 3 to show
an overview of the current state of research. Afterwards, we describe our
observed performance bottlenecks in Chapter 4 and propose possible solutions
in Chapter 5. We also provide an evaluation of our proposed solutions in
Chapter 6. Finally, we conclude the results in Chapter 7 and outline possible
next steps to optimize the SCION network stack even further in Chapter 8.
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2. Background
This chapter provides required knowlegde to understand the observed per-
formance problems and proposed solutions. It mainly contains information
about SCION, eBPF, XDP and transport protocols.

2.1 SCION

Scalability, Control, and Isolation on Next-Generation Networks (SCION) is
a greenfield approach to solve todays challenges with the global Internet.
The global Internet is based on two technologies, BGP and IP, that have not
drastically changed over the last 25 years. Over time more and more attacks
were found to disrupt these fundamentals. DDoS attacks and BGP hijacking
are two of the most known attacks. One of SCION’s main design goals is the
elimination of many known problems with a entirely new greenfield approach
[22].
SCION refers to the SCION protocol [30], as well as to the reference imple-
mentation [26].

2.1.1 Core Concepts

SCION networks consist of several Isolation Domains (ISDs). ISDs contain
one or more Autonomous Systems (ASes) and are used to provide logical
clustering for ASes isolating different parts of the SCION network from each
other. Each ISD agrees on a trust root configuration - its own policies, keys
and authorities - and can work isolated without other ISDs ensuring that
broken or malicious ISDs cannot take down the whole SCION network. Each
ISD is administered by a consortium of ASes, the ISD FControlcore. It exposes
a public key infrastructure for the authentication of ASes, provides inter-
ISD and intra-ISD path segments for routing purposes and high availablity
services, e.g. RAINS and time servers. ASes must accept the given trust root
configuration of the ISD and use an issued certificate to communicate with
other parts of the ISDs [22].
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CHAPTER 2 BACKGROUND 2.1 SCION
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Figure 2.1: Example SCION Network

Two SCION ASes are connected to each other with one or more links. A
link can be established over a physical or virtual link. ASes are generally
connected to core AS as seen in Figure 2.1 between AS 42 and AS 23. Links
between core ASes are called core links as seen between AS 1337 and AS
31821, links between ASes of different ISDs are called peering links as seen
between AS 25 and AS 5252.
SCION distinguishes between control plane and data plane. The control
plane is used to find out how to route the packet through the SCION network.
The data plane is used to forward the actual packet through the SCION
network. Each component of a SCION network has exactly one associated
plane. Figure 2.2 shows the components of a standard SCION installation
of a SCION endhost. Whereas, SCION Daemon and SCION Control Service
form the control plane, and SCION Dispatcher and SCION Border Router
form the data plane [22].
Figure 2.2 also shows, that each SCION host needs to run at least the SCION
Daemon and the SCION Dispatcher. The SCION Dispatcher provides the data
plane interface as the SCION Daemon provides the control plane interface
to the SCION network for user applications. Missing one or both of the
mentioned interfaces results in missing of connectivity. A SCION AS also
needs to run a Control Service and a Border Router on one of its members
to communicate with other SCION ASes. One SCION host can run a full
SCION AS (One-Host-AS) [15].
Each SCION application needs to register at the Dispatcher to be able to send
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CHAPTER 2 BACKGROUND 2.1 SCION
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Figure 2.2: SCION Application Structure

and receive SCION packets. It also needs to use the SCION Daemon to receive
routing and path information from the control plane. The SCION Control
Service provides all control plane services that are needed within an AS. It
handles all control plane tasks, mainly path exploration and registration and
path lookups. The SCION Border Router handles AS-outgoing packets and
sends them to the next AS. It also handles AS-incoming packets and sends
them to the appropiate SCION Dispatcher [22].

2.1.2 SCION Packet Structure

SCION packets have a defined structure, visualized in Figure 2.3. They are
wrapped in a transport protocol, e.g. UDP, which allows transport between
different ASes over traditional networks. SCION packets also contain a
Layer 4 protocol, e.g. UDP or TCP. They will be named SCION/UDP and
SCION/TCP to differ from the transport protocol [22].
SCION headers are dynamically sized and contain the following three main
areas: SCION common header, SCION address header, and SCION path
header. A SCION common header contains the important information and
lengths and offsets to other headers. It also contains the NextHdr field that
indicates the Layer 4 protocol. A SCION address header contains source and
destination ISDs and ASes and host adresses used by the transport protocol.
The SCION path header contains the fixed path from the source AS to the
destination AS. The intermediate destinations are called hops and are used
by the SCION data path for forwarding the packet [22].
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2.1.3 SCMP

SCION Control Message Protocol (SCMP) fulfills the same purpose in a
SCION network as Internet Control Message Protocol (ICMP) within the
current Internet. It mainly provides network diagnostics and error messages.
Network diagnostics are needed to built network diagnostic tools for the
SCION network, e.g. traceroute and ping. Error messages are used to signal
problems with sent packets or network problems [22]. There is a defined set
of SCMP messages that a SCION component needs to send within certain
situations, e.g. no route to host, adress unreachable, port unreachable [24].

2.1.4 Dispatcher

The Dispatcher is one of the main components of a SCION endhost. Since
SCION does not have any kernel integration like other network protocols,
the Dispatcher is a userspace interface to achieve SCION packet encapsula-
tion/decapsulation and other tasks typically done by the kernel integration.
Thus, instead of opening a UDP socket, for example, the application connects
to an existing UNIX socket provided by the Dispatcher. The Dispatcher
provides the data plane interface to the SCION network using an UDP socket
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Figure 2.4: Application Connection to the SCION Network

for connectivity with the Border Router and redirects incoming packets from
the UDP socket to the correct applications and sends out packets from the
UNIX socket to the SCION network. The Dispatcher also plays a main role
for performance since the Border Router forwards packets to the correct host
but it is not aware of different applications running on the same host, mainly
for performance reasons [22][26].
Figure 2.4 shows the packet flow of SCION applications. An application
utilizes the UNIX socket of the Dispatcher (Slow Connection) to connect
to the Dispatcher and transmit and receive data from the SCION Network.
The Dispatcher acts as an relay between the SCION network and the UNIX
socket and receives and sends SCION packets at its UDP socket. Having only
one entrypoint for all host traffic allows the optimization that the routers
do not need to be aware of the final destination port of the packet. This
allows multiple performance optimizations for intermediate SCION network
components between endhosts, not only for routers [22].
Each application needs to register at the Dispatcher. An application registra-
tion is a two message handshake. The application sends a listening address, a
service type and an tupel of ISD identifier and AS identifier to the Dispatcher.
In case of a successful registration, the Dispatcher returns an application port.
The application port is saved in a routing table of the Dispatcher. It is used
to forward packets to the correct applications but it does not open a port at
the host machine. All application traffic is routed through the UDP socket of
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Figure 2.5: Single-Threaded Packet Processing

the Dispatcher [22].
It runs two ring buffers interally, one to move packets from the UNIX socket
to the UDP socket and another for packets from the UDP socket to the UNIX
socket. If there is incoming data at the UNIX socket, it gets buffered into a
packet. Afterwards, it gets added to the outgoing ring buffer. The worker for
the outgoing ring buffer will wrap it into a transport packet, e.g. UDP, and
send it to the next hop and remove it from the ring buffer [26].
If there is an incoming packet on the UNIX socket, it gets unpacked from the
transport packet. In case the SCION packet contains a SCION/UDP packet,
it is added to the ring buffer and later send to the application determined
from the routing table. If the unpacked packet is an SCMP packet, it is
handled seperatly. If it is an unknown packet or if it is an application packet
for an unregistered application, it replies with an appropiate SCMP packet
[26].
Metrics are collected from packet processing that are also exposed, e.g. in-
coming and outgoing packets and transmitted and received bytes [26].

2.1.5 Client Packet Processing

SCION also provides a reference implementation for generating and handling
SCION packets including serialization and deserialization, called snet [27].
It is written in Go and used in most SCION-specific scientific evaluations
and for building core SCION network components. It uses a high-level packet
builder that serializes packet headers to byte arrays and deserializes the other
way round. It is used to convert SCION packets between raw byte arrays and
an application-consumable format, e.g. Go structs [26].
Each SCION application needs to connect to the Dispatcher utilizing a
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CHAPTER 2 BACKGROUND 2.2 eBPF and XDP

transport connection, e.g. a UNIX socket. It is used to transfer data from
and to the application. In Figure 2.5 we see the packet processing in the
reference implementation. If WritePacket gets called with a reference to a
application-consumable SCION packet, it needs to be serialized to a writeable
byte array and written to the underlying transport connection. Afterwards,
the function returns. If ReadPacket gets called, it blocks until incoming data
from the underlying transport connection is received. Afterwards, the read
data is parsed into a provided application-consumable packet, the function
returns, and the packet is ready to be consumed by the application. This all
happens single-threaded within the same thread as the function call [26].

2.2 eBPF and XDP

2.2.1 eBPF

Extended Berkeley Packet Filter (eBPF) is the newer and extended version
of the Berkeley Packet Filter from 1992. It gained support at Linux kernel
version 3.15 while a decent feature set is available since kernel version 4.9
[6][29]. It is an instruction set for packet processing allowing interaction and
modification used by Smart NICs or the Linux kernel. It can be used for
packet metrics, packet routing tasks and dropping packets. It executes within
kernel space omitting unneccessary copies of the network buffer [29].
Source code, written in the C language or the P4 language, can be compiled
into eBPF object code, but supports only a language subset. The main
missing language features are non-static global variables and dynamic loops
due to impossible verification. It gets verified by a kernel verifier checking
call depth, performance, license and memory access. Afterwards, the eBPF
object code gets just-in-time translated to machine-specific code for the kernel
interpreter or a smart NIC, if available [29].
Each eBPF program has a specific type defining the input and output values
and available context. There are over 25 different supported program types
for specific applications within the Linux kernel, e.g. packet dropping, metrics
[29].
Maps allow persistent data storage within eBPF programs and communication
with the program that attached the eBPF program. They are generic, untyped
key value stores. This is realized with the usage of shared memory between
kernelspace filter and userspace application. There are different types of maps
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CHAPTER 2 BACKGROUND 2.3 Reliable Transport Protocols

for a lot of different applications, e.g. maps and arrays. libbpf is used to
interact with maps from the host system [29].

2.2.2 XDP

Express Data Path (XDP) is an high performance data path within the
Linux kernel. It is used to view, modify or drop packets before they pass
the networking stack of the kernel. XDP is a hook of eBPF and can be used
by attaching a eBPF program with the type BPF_PROG_TYPE_XDP to one or
multiple interfaces. This program is called for every incoming packet with
a reference to a packet as parameter and an XDP action as return value.
In between, the program can read and modify the packet and access BPF
maps. The XDP action, listed within Table 2.1, defines the path of the packet
through the kernel. If the packet is dropped, it is not processed by the kernel.
If it is passed, the eventually modified packet gets processed by the kernel
afterwards. If it is redirected in any way, another network interface will
process the packets [29].

Table 2.1: XDP Actions [29] (Modified)

Value Action Description
0 XDP_ABORTED Drop packet, error in processing
1 XDP_DROP Drop packet
2 XDP_PASS Allow further processing by the kernel stack
3 XDP_TX Bounce packet back to interface it came from
4 XDP_REDIRECT Redirect packet to another interface

Figure 2.6 shows an code example for an eBPF program that can be used
within XDP. It receives the start pointer and end pointer from the given
context and checks, if the packet length (the difference between start pointer
and end pointer) is longer than 42. If yes, it passes the packet to the kernel.
Else the packet is dropped.

2.3 Reliable Transport Protocols

Reliable Transport Protocols are used as an overlay protocol over SCION and
other non-reliable transport protocols, e.g. UDP, to ensure data integrity.

10



CHAPTER 2 BACKGROUND 2.3 Reliable Transport Protocols

Figure 2.6: XDP Code Example

2.3.1 QUIC

Quick UDP Internet Connections (QUIC) was developed by Google in 2012
and standardized in 2016. It solves performance problems of a connection-
based approach, i.e. TCP, in downloading data by creating a virtual connection
utilizing a connection-less transport protocol, e.g. UDP. It is used in modern
browsers to transmit many small files from a server to a client without the
TCP connection estabilishment overhead. It ensures packet ordering and
retransmits lost packets [13].

2.3.2 PARTS

Path-Aware Reliable Transport over SCION (PARTS) is a fairly new approach
and it is currenty developed by Gartner et al. at Otto-von-Guericke University
in Magdeburg. Unlike QUIC, PARTS is designed to transfer large amounts
of data. It adapts the throughput based on bandwidth and packet loss.
Therefore, it reduces the sending rate if there is a lot of packet loss on the
receiver and raises the sending rate if there is a lot of available bandwidth. It
also ensures the correct transmission of the provided data chunk, since in the
case a packet is lost, it will be retransmitted [19].
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3. Related Work
One of the main challenges of computer science is to optimize any kind of
possible problems. This applies to algorithms just as much as to transmission
speeds. There is some related work on these topics, especially on performance
measurements of UDP-based connections and SCION connections.
Gartner wrote his master’s thesis entitled “Improving SCION Bittorrent with
efficient Multipath Usage” [11], in which he evaluates the use of SCION as a
transport protocol for BitTorrent and the impact of multipath capabilities
on transfer speeds. He concludes that there must be a bottleneck in the
SCION Dispatcher after removing the Border Router from the reference
implementation in his evaluation. He was able to achieve, using Anapaya
System AG’s High Speed Border Router (HSR), a throughput of 500 MBit/s
with one connection and a throughput of 600 MBit/s with multiple connections.
After enabling jumbo frames, higher throughputs could be achieved, but much
less than expected.
Neukom achieved a data transfer rate of 100 GBit/s in “High-Performance
File Transfer in SCION”, based on a work by Frei and Wirz [21][10]. To
reach this throughput, he used the Hercules protocol and wrote his own client
implementation, based on AF_XDP, which only uses the SCION protocol and
does not use any performance critical parts of the reference implementation.
He also made optimizations to the client library to achieve better throughput
rates, such as using multiple sending and receiving queues and enabling
multi-threading.
Apart from SCION, there is little current research on the performance of
UDP connections over high-speed links, i.e. 10 GBit/s and more.
Syzov et al. developed a UDP-based transport protocol utilizing DPDK and
evaluated it in their work “Custom udp-based transport protocol implemen-
tation over DPDK” [28]. Although the actual work is not directly related to
SCION, they still evaluate as their baseline the UDP performance of their
testbed using a very simple C program. This gives us a good reference of
what to expect in terms of performance for a fast implementation. They state
a sending speed of 10 GBit/s and a receiving speed of almost 7 GBit/s on a
single connection. Christensen and Richter also evaluated the performance
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CHAPTER 3 RELATED WORK

of UDP connections in their work “Achieving reliable UDP transmission at
10 Gb/s using BSD socket for data acquisition systems”, but on BSD-based
systems [7]. However, they measured similar results as Syzov et al., they
measured throughput of about 8 GBit/s under similar conditions.
Furthermore, although XDP is still a very new technology, there are already
several papers and reports that have analyzed XDP and found comparatively
high achievable bandwidth with XDP.
Miano et al. discussed in their work “Creating complex network services with
ebpf: Experience and lessons learned” the application possibilities of XDP in
real-world scenarios and also pointed out limitations that XDP has due to the
fact that code is executed in kernel space. They also evaluated if and to what
extent their solution of real-world problems with XDP have an impact on
performance. They concluded that some of the limitations can be overcome
and others will need to be solved in newer kernel versions. With regard to
performance, very good results were achieved [17].
Hohlfeld et al. evaluated the performance of XDP in their work “Demystifying
the Performance of XDP BPF”. In doing so, they also addressed the various
execution options, e.g., running the code on a Smart NIC. They came to
the conclusion that XDP is capable of processing over 15 million packets
per second, but the workload per packet should remain small, otherwise
bottlenecks will occur on smart NICs [12].
Bertin did a similar analysis in their paper “XDP in practice: integrating
XDP into our DDoS mitigation pipeline”. They use XDP to accelerate DDoS
mitigation at Cloudflare. There XDP is now used to check millions of packets
per second and to drop malicious packets. Previously this was done with
other kernel modules, for example iptables, where performance problems
occurred. Cloudflare is often an early adopter of many new technologies,
including XDP [2].
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4. Performance Bottlenecks
The following topic describes multiple performance bottlenecks regarding the
packet processing speed on SCION endhosts.

4.1 Dispatcher Performance

The Dispatcher is an often discussed component in the SCION community. It
is a required and important piece of the SCION end-host stack and absolutely
neccessary for connectivity of endhosts. Since SCION is not implemented
within the standard networking stack of common operating systems the
Dispatcher is needed to provide a network interface to SCION applications
[22].
There are many problems with this approach, as the Dispatcher represents a
vital part of the SCION ecosystem as shown in Chapter 2.1.4. For example,
Costea states issues regarding statefulness, architecture and packet processing
speed [8]. Some other SCION-related works like Gartner also experienced
a huge performance bottleneck regarding packet processing speed within
their evaluation [11]. They could not achieve the expected results due to
a unexplainable high CPU usage of the Dispatcher. They also noticed a
dependency between throughput and CPU speed [14] and a dependency
between throughput and MTU [11][14]. Since raising the MTU or raising
the CPU power leads to an increase of throughput, we assume a compute
performance issue once per packet. We analyzed the Dispatcher in depth and
can confirm their assumption.
Costea already tracked down two known performance problems [8]. The
Dispatcher is a userspace program moving every packet from kernelspace to
userspace, processing it, and moving it back from userspace to kernelspace.
This results in a lot of expensive context switches. Also, it currently uses a
non-packetized UNIX socket that requires a packetizing process.
In conclusion, the Dispatcher is conceptionally slow and need to be replaced
by a faster packet forwarding solution ideally within kernelspace.
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CHAPTER 4 PERFORMANCE BOTTLENECKS4.2 Slow Packet Handling

4.2 Slow Packet Handling

In the SCION reference implementation, there exists a connection imple-
mentation. It is used for example applications, other SCION applications
written in Go, and for most scientific evaluations. We ran into performance
bottlenecks within this implementation while designing and evaluating our
solution for the Dispatcher bottlenecks.
The SCION connection implementation performs two main tasks, receiving
and sending of packets, divided into two subtasks each. When receiving
packets, it reads from the underlying transport connection and parses the raw
packets into a processable format, for example parsing different headers and
handling SCMP packets and so on. When sending packets it serializes the
given packets and writes them to the underlying transport connection [26].
On the one hand, the deserialization of the packets needs a lot of time. It
extracts the L4 payload from the SCION packet, which is actually only the
separation of a certain part of the packet buffer. To achieve this the entire
packet is parsed and unneeded parts, i.e. everything except the payload, are
discarded. It also results in a lot of short-term memory usage that needs to
be freed by the garbage collector. On the other hand, the serialization of
the packets consumes a considerable amount of computing power. During
serialization, parts that are consistent over the lifetime of the connection are
regenerated unneccessarily.
Summarized, there is a (de-)serialization step and a sending or receiving step
handled within the same thread that reduces the time spent handling the
connection, e.g. reading or writing packets, leading to slow processing speed
and dropped packets under high load.
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5. Design
This chapter describes the design ideas to solve the forementioned performance
bottlenecks while not touching existing core SCION core components for
compatibility reasons.

5.1 Dispatcher Bypass

To solve the first of the performance problems mentioned in Chapter 4, we
present here our solution approach Dispatcher Bypass. This is intended to
solve the problem of Dispatcher Performance.
The SCION book proposes three different connection interfaces for applica-
tions, e.g. UDP, TCP and SCION Stream Protocol (SSP). Currently, the
Dispatcher only implements a UDP connection tunneled through a UNIX
socket [22]. Since the Border Routers use UDP to communicate with each
other and the Dispatcher also uses an UDP connection to send and receive
packets from the Border Routers, we will only focus on the UDP connection
interface within this implementation.
Figure 5.1 shows two main differences to the reference implementation, the
addition of a second connection (Fast Connection) and the introduction of
xiondp, compared to the existing implementation shown in Figure 2.4. We
want to introduce a second connection (Fast Connection) next to the known
connection (Slow Connection). This allows us to bypass the Dispatcher. The
Fast Connection is UDP based, like the connection between Dispatcher and
Border Router. We create a new control binary called xiondp deploying
an XDP program for redirecting incoming UDP packets directly at the Fast
Connection without utilizing the Dispatcher.

Table 5.1: Component Combinations

xiondp Slow Connection Both Connections Fast Connection
Enabled y y y
Disabled y y n
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Figure 5.1: Proposed Application Connection to the Internet

We also want to create a solution that can be enabled and disabled individually
per application. Table 5.1 shows the configurations possible, allowing use
the existing connection, both connections or use the new Fast Connection
exclusivly. Even if xiondp is not enabled the improved sending performance
can be utilized by using both connections but packets will be received through
the Slow Connection.

5.1.1 Client Library

We introduce a fundamental change to the client library. So far the client
library opens a UNIX socket (Slow Connection) to communicate with the
Dispatcher. After a registration handshake the same socket is used to transmit
data. We introduce the fast connection bypassing the dispatcher to receive
and transmit data instead of using the Slow Connection.
If the user wants to send data, we need to prepare one or more SCION
packets. Before preparation, the client library needs to receive available paths
to the destination from the SCION Daemon. When creating a packet, it
is prepared with the selected path from the available paths. It also adds a
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chunk of user data. In the reference implementation, the packet was sent
via the UNIX socket to the Dispatcher. It then repacks the packet into a
transport packet and sends it to the Border Router [26]. We can remove
this performance-critical step by packing the SCION packet directly into a
transport packet and sending it to the Border Router without utilizing the
Dispatcher.
When receiving a packet, it can be received via the UDP connection or the
UNIX socket. This depends on whether xiondp is enabled on the endhost,
otherwise as before only the UNIX socket is used. To provide the best
possible integration with existing systems, we should merge both incoming
packet streams to provide a resilient interface to the user which may have
performance issues. For this work, we decided against merging of streams
for this reason, but this requires that whenever the Fast Connection is used,
xiondp has to be enabled.

5.1.2 xiondp

xiondp is a word combination of SCION and XDP. It is a control binary
for deploying and controlling an eBPF program utilizing XDP. The eBPF
program is responsible for redirecting incoming SCION packets to the Fast
Connections of the applications before processing by the Dispatcher to speed
up the packet receiving speed.
The control binary attaches the eBPF program to all possible network inter-
faces. It also maintains a whitelist of open UDP sockets and saves this into a
BPF map that can be accessed from the eBPF program.
The eBPF program is called for every incoming packet. It processes the packet
and checks if it is qualified for a “fast-forward” redirection. It needs to contain
an UDP header encapsulating a SCION header wrapping a SCION/UDP
header. The SCION header must be adressed to the Dispatcher and the
SCION/UDP header also needs to contain a whitelisted port.
Figure 5.2 shows a schematic of a potentially forwardable packet containing
the mentioned headers and the process of port rewriting. If the packet can be
fast-forwarded, it will be rewritten from being addressed to the Dispatcher to
being addressed to the application UDP socket. Afterwards, it is passed to the
remaining kernel network stack and will directly arrive at the Fast Connection
within the application without an extra step via the Dispatcher. If the packet
cannot be fast-forwarded, e.g. non SCION traffic or applications that do not
use a Fast Connection, it will not be altered by the eBPF program. After an
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Figure 5.2: Packet Rewriting Process

unmodified SCION packet has passed through the rest of the kernel network
stack, it will arrive at the Dispatcher as usual, where it will be processed and
passed to the registered applications.
The eBPF program also records and classifies the processed packets in three
categories, all packets, non-fast-forwarded SCION packets and fast-forwarded
SCION packets. According metrics are exposed and can be used to verify the
flow of packets.

5.2 Multi-Threaded Packet Handling

To solve the problem of Slow Packet Handling, we present here our solution
approach Multi-Threaded Packet Handling.
Currently, the packet handling is a single-threaded implementation using
the simplest possible approach to handle packets. It reads and parses the
packets in the same thread and serializes and send the packets in the same
thread. We want to parallelize the implementation to improve the packet
processing speed. Since a transport connection, e.g. UDP, should only used
by one thread at a time, we need to maximize the time spent handling this
connection, e.g. reading and writing packets. Serializing and deserializing can
be done by multiple threads in parallel since this is a compute-intense task
and does not require any dependents except for read data.
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Figure 5.3: Multi-Threaded Packet Processing

We introduce multiple buffered processing queues for parallel packet processing
as shown in Figure 5.3, a write queue for serialized packets that are ready
to be sent out, and a read queue for read packets that are ready to be
parsed and processed from the application. Therefore, we can spawn two
independent threads for sending and receiving packets, e.g. writing thread
and reading thread. We still use the caller thread for serializing and parsing
packets. It also allows to use the read and write methods from multiple
threads concurrently to speed up packet processing on the same connection
even further.
We tried to implement four different packet processing queues, e.g. different
processing queues for serializing, writing, reading and parsing packets, but
Go provides an opinionated interface for reading and writing packets. If a
packet needs to be read, the reference to an empty packet is passed to this
function call. The interface expects the read packet to be written into this
reference. Decoupling this into a different processing queue, creating and
releasing new packets for every read packet and only copying the contents of
the parsed packet leads to many allocations which are dropped shortly after
allocation, following the garbage collector slows down the entire application
due to this workload. Therefore, we dropped this idea.

5.3 Own SCION Connection Implementation

The implementation of a multi-threaded SCION connection to solve a perfor-
mance problem improves bandwidth up to a certain threshold. Even though
the available resources can be better utilized by multi-threading, no further
enhancement are observable if threads are scaled up more. Therefore, we
decided to implement our own SCION connection to solve the problem of
Slow Packet Handling again.
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CHAPTER 5 DESIGN 5.3 Own SCION Connection Implementation

This implementation makes two basic assumptions. The receiver specified
when establishing the connection is fixed for the entire connection lifetime.
Furthermore, we do not expose the information which is contained in the
SCION headers. This leads to the fact that in our implementation in Go,
only net.Conn is implemented as an interface, not net.PacketConn, as is
usual, for example, with the existing SCION connection or UDP connections
[26][18].
In usual circumstances a SCION connection is established between two clients
and both clients will only communicate with each other utilizing this connec-
tion. Therefore, we drop the possibility to send SCION packets to arbitrary
SCION addresses. This allows more caching possibilities and removes com-
plexity.
We also reduce the nesting of connection implementations. Currently, there
is an connection implementation that parses the full SCION packet from the
underlying transport connection wrapped into another connection implemen-
tation extracting the payload from the SCION packet [26]. This design allows
more SCION configuration possibilities which are not needed in the usual
circumstances but in SCION core components. Our connection implementa-
tion will not expose the SCION packet to the user resulting in providing an
interface to transmit data hiding SCION implementation details.
Avoiding the implementation of net.PacketConn saves some steps and keeps
the implementation clear for a proof of concept. However, a complete imple-
mentation of net.PacketConn is possible without problems and would also
remove the restriction of the fixed receiver, since the interface specifies that
packets can be sent to abitrary receivers. This would make this optimized
SCION connection drop-in compatible with the previous implementation.
Previously, when the user wanted to send the entire packet, it was completely
re-serialized from scratch [26]. We have defined that the receiver will not
change over the connection lifetime neither does the SCION path. This means
that most parts of the package remain identical and only the PayloadLen
and some parts of the L4 payload change. The SCION packet serialization
process, implemented utilizing gopacket, degrades performance drastically for
reasons unknown to us. Therefore, we serialize an empty packet on connection
creation using the fixed sender and receiver addresses. The resulting buffer is
used as a template for all sent packets. If the user wants to send an arbitrary
payload, we only need to append the L4 payload to the buffer and change
the PayloadLen field within the SCION packet. It is also reusable over the
connection lifetime.
The reference connection implementation parses the entire packet from the
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underlying transport connection as shown in Figure 5.4 [26]. However, if
this connection is used outside of SCION core components in a user applica-
tion, then most often only the payload is extracted and the rest discarded.
Therefore, we can reduce this slow, memory-intensive two-step process into
a one-step process only parsing the payload as shown in Figure 5.5. Conse-
quently, we can parse the PayloadLen from a fixed position in the SCION
header (seen in Figure A.1) and extract PayloadLen bytes from the end of the
packet without utilizing the parsing method from gopacket which is rather
slow for the complex SCION packet.
Since there have been many attempts to optimize the SCION connection, it
is unsure how much a new implementation will bring in terms of performance
improvement [8]. However, a major advantage of a new, more straight-forward
implementation is the readability and better maintainability. The proposed
implementation has under 500 lines of code, which only partially rely on
existing code in snet [27].
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6. Evaluation
This chapter describes existent bandwidth measurements from Gartner, Chris-
tensen and Richter and Syzov et al. and explains the benchmark setup.
Afterwards, it evaluates the design ideas, described in Chapter 5, i.e. bypass-
ing the Dispatcher, implementing a multithreaded SCION connection and
implementing an optimized SCION connection, as multiple candidates within
different scenarios, i.e. a scientific and a real-world scenario. At the end, all
results are summarized and related to each other.

6.1 Existing Measurements

Gartner has already made some measurements in a similar environment in
their work “Improving SCION Bittorrent with efficient Multipath Usage”,
which served a different purpose, but can be used as a guide. There, as
already mentioned in Related Work, speeds of up to 600 MBit/s could be
measured [11].
Christensen and Richter has evaluated UDP performance in their work
“Achieving reliable UDP transmission at 10 Gb/s using BSD socket for
data acquisition systems”, completely independent of SCION. They were
able to achieve a throughput of 8 GBit/s over a single connection in an
environment of a similar performance level as our test environment presented
later, especially a fixed MTU of 1472 [7]. They used the C++ interfaces from
the direct kernel functions and thus had no overhead from an abstracting
programming language such as Go.
Syzov et al. have measured similar results in their work “Custom udp-based
transport protocol implementation over DPDK” [28]. They were able to
achieve a transmit speed of 10 GBit/s and a receive speed of almost 7 GBit/s,
also on a UDP connection. These results were also measured in a similar
environment.
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Figure 6.1: Evaluation Topology (Between ASes)
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Figure 6.2: Evaluation Topology (Same AS)

6.2 Setup

We use in our experiments the same testbed as Gartner [11]. It features two
dedicated server and a 10 GBit/s point-to-point connection to reduce noise
and errors.

6.2.1 Topology

On this testbed, we use two different topologies within our experiments.
In each topology both servers are attached to an attachment point of
SCIONLab[15] using an 1GBit/s link. Additionally, there exists a 10 GBit/s
link between both servers. All bandwidth measurements are done by utilizing
the 10 GBit/s link. Each link has a fixed MTU of 1500 bytes.
Our two topologies differ in their use of ASes. Synthetic Data Transmit
Between ASes, File Transfer via QUIC, and File Transfer via PARTS uses
two ASes with one server per AS, as shown within Figure 6.1. Synthetic Data
Transmit Within AS uses both servers within the same AS, as shown within
Figure 6.2.
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6.2.2 Machines

In our testbed, we use two similar machines and a direct 10 GBit/s connection.
A machine contains an Intel Xeon Silver 4114 CPU with 10x2.20GHz, 48GB of
DDR4 RAM with a clock rate of 2666MHz, an 1 GBit/s network interface, and
an 10 GBit/s network interface. Each machine runs a copy of Ubuntu 20.04.1
LTS with the latest patches and the SCIONLab December 2020 Release. We
also added a High Speed Border Router (HSR) from Anapaya Systems AG
to eliminate known restrictions within the open-source Border Router [26][1].
Otherwise, the SCION installation is as adviced by default.

6.2.3 Scenarios

We evaluated two different scenarios within this work. In our first scenario,
Synthetic Data Transmit, we transmit and read synthetic data as fast as
possible to establich a ground truth of the possible performance. In our
second scenario, File Transfer, we aim for a more real-world scenario where
we transfer a file from one server to another.
Synthethic Data Transmit is realized by a two applications: a server application
and a client application. The server applications receives packets sent by the
client application. Both applications process as many packets as they can with
no rate limiting. Both applications utilize one to many connections in parallel
to overcome possible limitations of single connections. We collect data about
the sending goodput and throughput, receving goodput and throughput and
packet loss.
File Transfer is done by utilizing a reliable transport protocol, i.e. QUIC and
PARTS to add reliable transport to SCION, since it suffers from the missing
packet order and no guarantees of packet delivery without an additional
overlay protocol [22]. The server application receives a file sent by the client
application using the overlay protocol. Also, both applications utilize one
to many connections in parallel, too. We measure the time for the complete
filetransfer including possible retransmissions and other protocol-specific
actions and check the correctness of the received file afterwards. Since we
measure such small packet loss in our Synthetic Data Transmit, we do not
measure it within File Transfer, because we do not assume changes in packet
loss for sending with lower than maximum bandwidth.
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6.2.4 Candidates

We use different candidates in both scenarios. We measure each experiment
once with no changes to the existing codebase as Dispatcher. Additionally,
we measure each experiment with the needed changes to bypass the Dispatcher,
which have been described in 5.1, named xiondp. Since we discovered and
solved further performance bottlenecks by utilizing multi-threading, we also
measure all experiments with the optimized multi-threading version of the
existing SCION connection, introduced in 5.2, as xiondp Multi-Thread.
Last but not least, we also include our own implementation of a SCION
connection, outlined in 5.3, in the evaluation as xiondp Optimized.
We also considere some other candidates, but we dropped them for various
reasons. We did not evaluate any other connection implementations not
bypassing the Dispatcher, even if that would have been technically possible.
We saw the limitation within the Dispatcher within our first tests that cannot
be fixed by utilizing another connection implementation. We also have not
improved the xiondp Optimized connection further since we already reached
maximum possible performance in our testbed and could not get better results
in any way.

6.3 Experiments

6.3.1 Synthetic Data Transmit Between ASes

We used this basic experiment to test our design approaches described in
Chapter 5 to solve our performance bottlenecks described in Chapter 4. We
ran the Synthetic Data Transmit scenario between two distinct ASes with 1
to 12 parallel SCION connections.
Figure 6.3 shows, that the Dispatcher candidate was able to send 1.2 GBit/s
goodput. These measurements are slightly higher than the expected results
shown in previous experiments by Gartner [11]. However, optimal conditions
prevail in our experiment, whereas in the existing experiments the entire
BitTorrent overhead had to be handled as well.
The xiondp candidate shows an increase to a maximum of 4.6 GBit/s in
sending throughput. It was also capable of receiving packets with the same
speed. At this point we found that the potential bottleneck is no longer
outside the application, as before in the Dispatcher, but is now part of the
application, probably within the connection implementation.
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The next candidate xiondp Multi-Thread shows a great performance
improvement compared to the last candidate. It was able to send up to 6.8
GBit/s but had troubles receving the sent packets in time. We assume a
performance limitation in the packet decoding and serializing process which
causes the packets that are not processed fast enough to be dropped. There
is also a decreased sending performance at 5 connections, which occurs
reproducibly on our test environment. We will analyze this in the future.
The candidate xiondp Optimized does not improve the maximum transmis-
sion speed significantly compared to the multi-threaded approach, but it was
able to receive packets as fast as they were sent. This makes it possible to use
it in real-world scenarios. It also doubles the single-connection performance,
which is especially important for non-scientific applications.
Figure 6.4 shows, that we experience no major packet loss within this exper-
iment except for xiondp Multi-Thread candidate. As noted earlier, the
approach seems to have problems reading the packets as fast as they arrive,
presumably by decoding them too slowly. We handle each connection with
separate threads in this candidate, which means that the number of threads
used scales linearly with the number of connections. We see a sharp increase
in packet loss until the connection throughput is fully saturated. This packet
loss happens because the sender with more threads performs better than the
receiver. After this peak in packet loss, it decreases as more connections
are used, since the sender now divides the same number of packets, since
the connection throughput is saturated, among more connections. These
connections are processed with more threads on the receiver side and thus
allow better receive performance. However, notable packet loss can still be
measured, which disqualifies this candidate for any real-world use. Figure 6.4
also shows low packet loss of the xiondp Optimized candidate, which is
not caused by the connection candidate itself. Presumably, the border router
in this particular configuration is already the problem here, which will be
further evaluated in the next experiment.
Throughout the experiment, we saw that more connections could significantly
increase throughput once the initial Dispatcher bottleneck was resolved.
Furthermore, we could not achieve more than a goodput of 7 GBit/s with any
implementation. Even though this corresponds to a throughput of 7.5 GBit/s,
this should not be the limit of the potential speed, since there were still enough
resources available in our testbed. We have also improved single-connection
performance, which is very important for non-scientific applications. With a
goodput of almost 3 GBit/s, this performance is already much better than
the previous one, which could only reach 800 MBit/s.
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AS (generated from Table A.6 and Table A.8)

Our candidates show greatly improved goodput compared to the Dispatcher for
synthetic data. We see performance improvements for all different candidates
up to factor 6. Single-connection performance in particular could also be
quadrupled with the xiondp Optimized candidate.

6.3.2 Synthetic Data Transmit Within AS

Since we did not know the reason for our 7 GBit/s limitation and still aim to
saturate the 10 GBit/s link, we decided to repeat the last experiment and
eliminate the HSR as a potential cause. Since a Border Router is crucial to
transmit data between two different ASes, both servers are configured to be
part of the same AS for this experiment. This changes the path of the data
slightly so that no Border Router is used to communicate between the two
servers. We repeated the same Synthetic Data Transmit scenario with 1 to
12 parallel SCION connections.
Figure 6.5 shows the measured sending and receiving goodput in this experi-
ment. Although we do not see any significant differences compared to the
previous experiment for small numbers of connections, the 7 GBit/s limit
seems to disappear and even slower candidates like xiondp were able to
achieve better results. xiondp Multi-Thread and xiondp Optimized were
able to send 8.1 GBit/s and 8.6 GBit/s over multiple SCION connections.
There are no changes for the results of the Dispatcher candidate. Since
8.6 GBit/s goodput corresponds to 9.4 GBit/s throughput, we reached the
limitations of our testbed.
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Figure 6.6: Packet Loss of Synthetic Data Transmit Within AS (generated
from Table A.10)

In our previous experiment, the sending and receiving bandwidth did not
scale linearly. It would be expected utilizing multiple parallel independent
connections. Without an active Border Router, we achieve almost a linear
bandwidth scaling until hitting our testbed limitations. We also see a lot less
packet loss for fast connections, e.g. xiondp Optimized, that was probably
previously introduced by the Border Router.
In short, this shows another performance improvement and raises the maxi-
mum possible goodput to 8.6 GBit/s. It is probably not that important for
non-scientific measurements since the performance improvement is only about
15% compared to the same experiment with a Border Router. We assume the
combination of application and Border Router on the same host leads into
potential bottlenecks, so in Future Work we aim to verify this assumption
with testing in setups where this is not the case.

6.3.3 File Transfer via QUIC

Next, we present a real-world experiment to make sure our changes also work
for non-scientific applications. Therefore, we ran the File Transfer scenario
with QUIC as transport overlay protocol from 1 to 12 parallel connections
between two distinct ASes. Not all candidates used in the previous experiments
are suitable for the real-world experiment. Due to the high packet loss of our
xiondp Multi-Thread candidate, as already mentioned within 6.3.1, we
dropped this candidate for this real-world experiment. We also dropped the
xiondp Optimized candidate for implementation-specific reasons, since quic-
go requires a net.PacketConn implementation that the optimized SCION
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Figure 6.7: Goodput of File Transfer via QUIC (generated from Table A.11)

connection cannot provide as stated in 5.3 [16].
Figure 6.7 shows the goodput for the two remaining candidates. The Dis-
patcher candidate performs as expected transmitting the file at around 1.3
GBit/s goodput. The candidate xiondp outperforms the other candidate
with 4 or more connections and we were able to transmit a file with 3.6
GBit/s goodput. Although a goodput of 4.5 GBit/s could be achieved in the
synthetic experiment, the results are more than satisfactory considering the
additional protocol and compute overhead.
In summary, xiondp shows, that our Dispatcher Bypass is also applicable
in real-world scenarios and outperforms existing approaches by more than a
factor of 3.

6.3.4 File Transfer via PARTS

Since QUIC and its go implementation quic-go do not work very well for our
use cases and are not the optimal choice for a large file transmit, we decided
to run the same File Transfer scenario with PARTS as transport overlay
protocol. Since Parts is in an early stage of development, 12 connections are
not currently supported. Therefore, we use 1 to 8 parallel connection between
two distinct ASes for each proposed candidate but xiondp Multi-Thread.
We had the same problem as described within the previous section and decided
to remove the candidate due to the high packet loss. Fortunately, with the
PARTS implementation, we can evaluate the xiondp Optimized candidate.
Figure 6.8 shows the goodput for our candidates. As always, the Dispatcher
candidate performs as expected. It is able to transfer the file with a good-
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Figure 6.8: Goodput of File Transfer via PARTS (generated from Table A.12)

put of 1.2 GBit/s. Although the transfer rate is lower than in a previous
experiment, it is within the expected range, considering that PARTS also
requires processing power that is no longer available for sending and receiving
packets. The xiondp candidate performs slightly better as expected from
the previous experiment and is able to transfer the file at a goodput of 4.5
GBit/s. Also the new xiondp Optimized candidate performs similar to the
previous candidate and is able to achieve a goodput of 4.4 GBit/s utilizing
only three connections.
Since the xiondp Optimized candidate performed very well with synthetic
data, we actually expected it to outperform the xiondp candidate. The
failure to meet this expectation may probably be a problem with the PARTS
protocol not utilizing all the available bandwidth. Fortunatly, it works very
well in single connection applications and it is able to transmit a file with one
connection at about 3 GBit/s goodput. It doubles the possible goodput of
the xiondp candidate.
In summary, xiondp and xiondp Optimized show that real-world appli-
cations can profit from raised goodputs. We were able to outperform the
existing Dispatcher approach by a little more than factor of 3.

6.4 Summary

The experiments evaluate the performance of our proposed changes within
Chapter 5 in two different scenarios, i.e. synthetic data and file transfer. The
candidates are a reasonable combination of the various optimizations as they
could be used in real-word scenarios.
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There are two impactful performance bottlenecks in the current SCION
reference implementation, i.e. the Dispatcher and the performance of the
client library. We showed, that our changes can overcome both bottlenecks in
scientific and real-world applications.
In the first two experiments it was tested whether and to what extent the
proposed changes cause a change in the transmission speed. For this purpose,
synthetic data packets were transferred between two servers as fast as possible.
From this, the maximum sending and receiving rate were determined, and
it was also recorded how many packets were lost. Initially, only four times
as many packets could be transmitted with candidate xiondp as with the
reference implementation. Six times as many packets could be transmitted
utilzing the xiondp Multi-Thread and xiondp Optimized candidate. In
addition, the HSR setup was identified as another possible bottleneck. If
the HSR is removed from the test setup, then the goodput can be increased
sevenfold.
In the other two experiments it was tested whether the proposed optimizations
also work in real-world scenarios. For this purpose, the speed of a file transfer
between two servers via different overlay protocols was tested. The file transfer
was accelerated with the candidates xiondp and xiondp Optimized by at
least a factor of 3 compared to the reference implementation. Additionally,
one candidate was declared as unusable in real-world applications due to a
high packet loss rate.
We were able to solve both major performance bottlenecks and show that
they are applicable in almost all SCION applications. With a bypass of the
Dispatcher, initial throughput improvements of up to a factor of 3 are possible;
with further optimization of the SCION connection implementations, it was
also shown that the throughput can be improved by factor 4 compared to the
reference implementation.
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7. Conclusion
The objective of this thesis was to answer the following research question:
To what extent can modern network-related technologies, especially XDP,
accelerate the performance of end-user applications in SCION without chang-
ing APIs? To answer this question, two scenarios, a scientific scenario and a
real-world scenario, were evaluated with four different candidates representing
the different optimizations.
We have solved several bottlenecks with this thesis. The most impactful
bottleneck so far was in the Dispatcher, which could be solved with the help
of XDP. XDP offers the possibility to perform basic operations on incoming
packets and thus to execute the functionality of the Dispatcher relaying
packets to the registered applications in the kernel space. With this change
alone, we were able to measure almost a quadrupling of goodput during
our synthetic experiment from 1.2 GBit/s to 4.6 GBit/s. In our real-world
experiment, we were still able to measure a threefold increase in goodput and
the goodput from 1.2 GBit/s to 3.6 GBit/s.
However, it was also determined that solving this bottleneck alone would
not lead to our goal and now we also need to process packets efficiently and
quickly in the client applications. For this purpose, we implemented our own
optimized SCION connection which makes assumptions to gain performance
outlined in Chapter 5.3 that can be lifted in further research outlined in
Chapter 8. Those optimizations increases the goodput once again. Thus, we
were able to increase the goodputs from 1.2 GBit/s to 8.6 GBit/s and so
sevenfold the performance in synthetic experiments.
In real-world applications, goodput could only be more than tripled from
1.2 GBit/s to 4.5 GBit/s. This is probably because the overlying protocols,
i.e. QUIC and PARTS, are not or not yet optimized to transmit such high data
rates. However, we were also able to almost quadruple the single-connection
goodput, i.e. the goodput that can be achieved with only a single connection.
This makes it easier to implement applications that rely on fast network
speeds, because they can now save the overhead of connection management.
In summary, XDP had a major impact here in eliminating the bottlenecks that
had previously required many hours of optimization [8]. It alone was able to
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CHAPTER 7 CONCLUSION

quadruple the goodput. However, in comparison to bare-metal perforamnce,
this is not sufficient, but in this context it is an important foundation for
further optimizations. The libraries within the applications, which send and
receive the packets, must also be built with similar performance in mind,
so that this advantage may be exploited. Further performance advantages,
i.e. optimized SCION connection, can be used with certain restrictions, but
this is purely optional.
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8. Future Work
At the end, there are always unanswered questions that offer opportunities to
conduct further research. Besides possibilities for further optimization, the
reasons for the bottlenecks can also be explored.
For a network protocol that aims to be a considerable alternative to the existing
Internet [22], there should be unit tests and performance benchmarks for such
critical components as the SCION connection, which is used by all parts of
the reference implementation. This is not the case so far and leads to a certain
hurdle to touch and optimize existing code. In our work, missbehaviour of our
connection implementations occurred, which subsequently led to erroneous
measurements. This would have been noticed with extensive tests.
In our implementation of the optimized SCION connection, we discovered
two limitations compared to the normal SCION connection, namely dropping
information of the origin and packets may only be sent to a fixed remote
destination. This can be solved with the implementation of net.PacketConn,
making this optimized SCION connection fully drop-in compatible with the
existing SCION connection.
In the evaluation, we discovered an unexpected limitation by running the
HSR and the application on the same machine. This may be a problem
with simultaneous reading and writing on the same network interface of the
application and HSR, however we have not investigated this further, as this
would have gone beyond the scope of this work. However, it would be a
relevant further research topic to increase the capacity of the SCION network.
In addition, many new possibilities arise when XDP can be used. The bypass
of the Dispatcher was a concise example of the implementation of such
problems with XDP. In a further step, a Border Router or similar could
also be accelerated with the help of XDP, even if this would become more
complex due to the required data. The reference implementation here could
also benefit from the possible speed improvements that can be achieved by
accelerating the critical path with XDP. For example, only the forwarding
of SCION data packets could be accelerated via XDP and all other SCION
packets could be handled as usual, as we did within xiondp.
Furthermore, the entire SCION connection used in the client applications
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CHAPTER 8 FUTURE WORK

could be converted to a UDP connection using XDP. This would imply that
applications could use the SCION network like a normal UDP connection and
with the help of XDP all connections would be wrapped transparently into
a SCION connection when sending and unpacked from a SCION connection
when receiving. The receive direction is trivial to implement, the send
direction requires more effort because the addressing of SCION and UDP is
fundamentally different.
In summary, there is much work to be done both within the reference imple-
mentation and in a potential new high-performance implementation. Different
companies maintain their own SCION implementation. Often the reference
implementation lags behind the closed source implementations performance-
wise. This should be addressed, also to drive the development of applications
using SCION, by improving the speed of the reference implementation. Many
parts of the data path of the reference implementation can be accelerated
using modern technologies, e.g. XDP. If this is still not desired within the
reference implementation [25], it is possible to develop a high-performance
implementation based on the reference implementation. Some components
such as the Border Router could benefit greatly from this.
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A. Appendix

Design

SCION Packet Structure

Figure A.1: SCION Common Header [22]

Evaluation

Synthetic Data Transmit (SDT) Between ASes

In this chapter, the measurement results of the experiment Synthetic Data
Transmit Between ASes are tabulated. The graphs of the evaluation chapter
are based on these data.

Table A.1: SDT Between AS - Sending Goodput (in MBit/s)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 787 662 1489 2797
2 1279 1485 3422 5688
3 1240 2040 5577 6473
4 1174 2606 7066 6223
5 1206 3104 5890 6358
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Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
6 1207 3458 7063 6820
7 1221 3795 7064 6676
8 1153 4045 7059 6850
9 1221 4189 7061 7023
10 1148 4380 7066 7086
11 1211 4402 7065 7211
12 1192 4611 6894 7057

Table A.2: SDT Between AS - Sending Throughput (in MBit/s)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 848 713 1605 3014
2 1378 1600 3688 6129
3 1336 2198 6010 6975
4 1265 2808 7614 6706
5 1300 3344 6347 6852
6 1301 3726 7611 7350
7 1316 4090 7612 7194
8 1242 4359 7607 7382
9 1316 4514 7609 7568
10 1237 4720 7614 7635
11 1305 4743 7614 7770
12 1284 4969 7429 7604

Table A.3: SDT Between AS - Receive Goodput (in MBit/s)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 789 663 1478 2983
2 1252 1485 2733 5260
3 1234 2041 3578 6330
4 1214 2609 5172 6156
5 1205 3068 4833 6163
6 1206 3458 5716 6777
7 1221 3797 5861 6555
8 1223 4046 5669 6803
9 1222 4189 5857 6966
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Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
10 1214 4382 6288 7008
11 1211 4404 6117 7147
12 1206 4613 6448 6958

Table A.4: SDT Between AS - Receive Throughput (in MBit/s)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 850 715 1592 3214
2 1350 1600 2945 5668
3 1330 2199 3856 6822
4 1308 2812 5573 6634
5 1298 3306 5208 6641
6 1300 3726 6160 7303
7 1315 4092 6316 7063
8 1318 4360 6108 7331
9 1317 4514 6312 7507
10 1308 4722 6776 7552
11 1305 4745 6592 7702
12 1300 4971 6948 7498

Table A.5: SDT Between AS - Packet Loss (in %)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 2.24182 0 15.929 2.032
2 2.11663 0 23.968 7.5935
3 0.51305999 0.0186 31.204 2.3071
4 0.29898 0.0112 24.172 1.1559
5 0.16294 0 19.622 3.1209
6 0.12926 0.0105 15.181 0.8363
7 0.07474999 0.0062 13.326 2.0306
8 0.05952 0.0322 11.633 0.819
9 0.02549 0.0259 11.547 0.9216
10 0.04864999 0.023 10.678 1.2763
11 0.0519 0.0213 9.3842 1.057
12 0.01404999 0.0456 8.9004 1.5561
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Synthetic Data Transmit (SDT) Within AS

In this chapter, the measurement results of the experiment Synthetic Data
Transmit Within AS are tabulated. The graphs of the evaluation chapter are
based on these data.

Table A.6: SDT Within AS - Sending Goodput (in MBit/s)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 818 686 1516 3034
2 1184 1494 3423 5549
3 1102 2069 5894 7869
4 1068 2591 8154 7657
5 1056 3505 8156 8013
6 1053 4101 8155 7831
7 1056 4526 8154 8095
8 1056 4793 8153 8442
9 1054 4906 8151 8700
10 1050 5161 8152 8692
11 1046 5237 8149 8739
12 1041 5204 8138 8671

Table A.7: SDT Within AS - Sending Throughput (in MBit/s)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 881 739 1634 3269
2 1276 1610 3688 5980
3 1187 2229 6351 8480
4 1151 2792 8786 8252
5 1138 3777 8788 8635
6 1134 4419 8788 8439
7 1138 4877 8786 8723
8 1138 5165 8785 9097
9 1136 5287 8783 9374
10 1132 5562 8784 9367
11 1127 5643 8782 9417
12 1122 5608 8770 9344
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Table A.8: SDT Within AS - Receive Goodput (in MBit/s)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 814 686 1517 2940
2 1180 1494 3353 5490
3 1102 2069 4671 7813
4 1068 2592 5931 7657
5 1056 3506 6910 8019
6 1053 4102 7169 7826
7 1056 4528 7174 8084
8 1056 4795 7204 8449
9 1054 4909 7199 8708
10 1050 5163 7787 8695
11 1046 5240 7472 8749
12 1041 5207 7832 8675

Table A.9: SDT Within AS - Receive Throughput (in MBit/s)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 877 739 1635 3168
2 1272 1610 3613 5916
3 1187 2230 5033 8419
4 1151 2793 6391 8251
5 1138 3778 7446 8641
6 1134 4420 7726 8433
7 1138 4880 7731 8712
8 1138 5167 7763 9104
9 1136 5290 7758 9384
10 1132 5564 8391 9370
11 1127 5646 8051 9428
12 1122 5611 8439 9348

Table A.10: SDT Within AS - Packet Loss (in %)

Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
1 0.53269 0.00011 0.10505 3.1311
2 0.34005 0.00172 4.95776 1.1261
3 0.03019 0 23.3618 0.8092
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Connections Dispatcher xiondp xiondp Multi-Thread xiondp Optimized
4 0.0167 0.00332 27.744 0.0828
5 0.00204 0 19.2923 0
6 0.00092 0.00029 16.7311 0.2237
7 0.00055 0 16.8329 0.2419
8 0.00042 0 16.2206 0.0345
9 0.00324 0.00075 16.2933 0.0034
10 0.00036 0 10.4542 0.0743
11 0 0 11.3893 0
12 0 0 9.95443 0

File Transfer via QUIC

In this chapter, the measurement results of the experiment File Transfer via
QUIC are tabulated. The graphs of the evaluation chapter are based on these
data.

Table A.11: File Transfer via QUIC - File Transmission Speed (in MBit/s)

Connections Dispatcher xiondp
1 419.894 351.7317
2 1056.895 886.3849
3 1278.817 1408.477
4 1268.274 1962.021
5 1282.371 2515.808
6 1286.342 2981.765
7 1283.956 3336.224
8 1293.150 3505.147
9 1308.632 3514.043
10 1313.183 3531.972
11 1319.021 3562.264
12 1317.766 3611.826

File Transfer via PARTS

In this chapter, the measurement results of the experiment File Transfer via
PARTS are tabulated. The graphs of the evaluation chapter are based on
these data.
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Table A.12: File Transfer via PARTS - Transmission Speed (in MBit/s)

Connections Dispatcher xiondp xiondp Optimized
1 696 1438 2972
2 1060 2549 4052
3 1133 3714 4458
4 1133 4052 4169
5 1110 4374 4206
6 1131 4458 4118
7 1149 4523 4046
8 1168 4448 4048

52


	Introduction
	Motivation
	Goal
	Structure

	Background
	SCION
	Core Concepts
	 Packet Structure
	
	Dispatcher
	Client Packet Processing

	eBPF and XDP
	eBPF
	XDP

	Reliable Transport Protocols
	QUIC
	PARTS


	Related Work
	Performance Bottlenecks
	Dispatcher Performance
	Slow Packet Handling

	Design
	Dispatcher Bypass
	Client Library
	xiondp

	Multi-Threaded Packet Handling
	Own SCION Connection Implementation

	Evaluation
	Existing Measurements
	Setup
	Topology
	Machines
	Scenarios
	Candidates

	Experiments
	Synthetic Data Transmit Between ASes
	Synthetic Data Transmit Within AS
	File Transfer via QUIC
	File Transfer via PARTS

	Summary

	Conclusion
	Future Work
	Literature
	List of Figures
	List of Tables
	List of Abbreviations
	Appendix
	Design
	Evaluation


